Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 68

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

VR extension of client server type particle-based volume visualization application

Kawamura, Takuma; Sakamoto, Naohisa*; Osaki, Tsukasa*

Journal of Advanced Simulation in Science and Engineering (Internet), 10(1), p.31 - 39, 2023/02

Visualization of large fluid computation results at remote locations by VR, especially using volume rendering, is one of the key challenges in the visualization field. The remote visualization application CS-PBVR is capable of interactive volume rendering of large-scale data in remote locations. In this study, the image generation of CS-PBVR was extended for head-mounted displays to develop a remote VR visualization application, VR-PBVR. We also developed a function that allows manipulation of visualization data by gesture control with both hands in VR space. We applied VR-PBVR to remote volume data and confirmed that it can visualize the data at interactive frame rates.

Journal Articles

Development of VR support and gesture control functions for particle-based visualization applications

Kawamura, Takuma; Sakamoto, Naohisa*

Dai-36-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2022/12

Volume rendering is useful for visualizing computer fluid dynamics (CFD) data, and its VR visualization helps to understand complex 3D data. Volume rendering of large scale data in remote locations in VR space is an important issue of the visualization field. A remote visualization application CS-PBVR can interactively visualize the large-scale datasets in remote locations with volume rendering. In order to extend CS-PBVR into VR-PBVR which is applicable to a head mount display (HMD) Oculus rift S, we added a stereo image generation function, a gesture control function, and a renewed processing flow. VR-PBVR achieved interactive visualization of remotely located test dataset (2M cells) with 90 fps.

Journal Articles

Numerical analyses of design extension conditions for sodium-cooled fast reactor designed in Japan

Yamano, Hidemasa; Kubo, Shigenobu; Tokizaki, Minako*; Nakamura, Hironori*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 12 Pages, 2022/10

Specific design features of advanced sodium-cooled fast reactors (SFRs) designed in Japan are a passive reactor shutdown system, a passive decay heat removal system (DHRS), and an in-vessel retention (IVR) concept against an anticipated transients without scram (ATWS) in design extension condition (DECs). The present paper describes numerical analysis methodologies for event sequences studied in Japan and some numerical analyses of DECs to show the effectiveness of the passive shutdown system against a typical ATWS and severe accident mitigation measures for the IVR of molten core. For the passive shutdown capability, the numerical analysis has demonstrated the effectiveness of a self-actuated shutdown system against a severe ATWS event, for which the temperature response time was separately evaluated by a computational fluid dynamics (CFD) code. A recently developed debris-bed cooling analysis methodology coupled with a CFD code and a debris-bed module has successfully simulated a three-dimensional coolant flow field near the debris bed with the passive DHRS capability in order to demonstrate the debris-bed coolability on a core catcher.

Journal Articles

VR extension of particle-based remote visualization application

Kawamura, Takuma; Sakamoto, Naohisa*

Proceedings of 41st JSST Annual International Conference on Simulation Technology (JSST 2022) (Internet), p.266 - 269, 2022/09

Visualization of the large CFD dataset in remote locations by VR, especially using volume rendering, is one of the issues in the visualization field. The visualization library KVS supports PBVR, a unique particle-based visualization method suitable for large-scale data, and we have developed an extension of KVS for VR. In this paper, we present a design for VR extension of CS-PBVR, a remote visualization application based on KVS. The developed CS-PBVR for VR is then applied to test data and shown to be capable of VR visualization at interactive frame rates.

Journal Articles

Numerical investigations on the coolability and the re-criticality of a debris bed with the density-stratified configuration

Li, C.-Y.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.

Journal Articles

Interactive in-situ steering and visualization of GPU-accelerated simulations using particle-based volume rendering

Kawamura, Takuma; Hasegawa, Yuta; Idomura, Yasuhiro

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.187 - 192, 2020/10

In order to realize the atmospheric dispersion prediction of pollutants, a fluid simulation by adaptive mesh refinement (AMR) optimized for GPU supercomputer has been developed, and interactive visualization and parameter steering of the simulation results are needed. In this study, we extend particle-based in-situ visualization method for structured grids into AMR, and enables in-situ steering of the simulation parameters by utilizing an in-situ control mechanism via files. By combining the developed method with plume dispersion simulation in urban areas running on a GPU platform, it was shown that human-in-the-loop pollution source search is possible without enormous parameter scanning.

Journal Articles

Intuitive interactions for immersive data exploration of numerical simulation results

Tabata, Ginga*; Sakamoto, Naohisa*; Kawamura, Takuma

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.193 - 200, 2020/10

In interactive visualization/analysis, interactive operation of visualization results on the screen is an important technology that is directly linked to knowledge extraction. On the conventional 2D display, interactive operations such as moving the viewpoint and adjusting the visualization parameters were performed using the mouse. Then, the virtual reality (VR) technology such as CAVE system and head mounted display (HMD) is used for visualization and analysis, and the development of technology for interactively operating visualization result data in VR space has become one of the important issues in the visualization field. In this paper, we propose a technique to capture a real hand gesture by Leap Motion and intuitively change the viewpoint movement and visualization parameters in VR space by HMD. We asked four people to test the developed technology, and obtained a result that it was easy to change the viewpoint from the questionnaire on the operation feeling.

Journal Articles

Challenge to decommissioning of Fukushima Daiichi Nuclear Power Station by applying VR technology

Horiguchi, Kenichi

Gijutsushi, 30(4), p.8 - 11, 2018/04

AA2017-0669.pdf:1.0MB

The verification activity and training of operation in the Fukushima-Daiichi Nuclear Power Station are more important than another Nuclear Power Station. At the JAEA Naraha Remote Technology Development Center, it has being carried out the development work to apply to the decommissioning work by using the full sized mock up and VR system which is built based on location surveying data of inside the reactor building. It is able to contribute to the decommissioning more reliably and efficiently.

Journal Articles

Performance evaluation of runtime data exploration framework based on in-situ particle based volume rendering

Kawamura, Takuma; Noda, Tomoyuki; Idomura, Yasuhiro

Supercomputing Frontiers and Innovations, 4(3), p.43 - 54, 2017/07

AA2017-0206.pdf:3.74MB

We examine the performance of the in-situ data exploration framework based on the in-situ Particle Based Volume Rendering (In-Situ PBVR) on the latest many-core platform. In-Situ PBVR converts extreme scale volume data into small rendering primitive particle data via parallel Monte-Carlo sampling without costly visibility ordering. This feature avoids severe bottlenecks such as limited memory size per node and significant performance gap between computation and inter-node communication. In addition, remote in-situ data exploration is enabled by asynchronous file-based control sequences, which transfer the small particle data to client PCs, generate view-independent volume rendering images on client PCs, and change visualization parameters at runtime. In-Situ PBVR shows excellent strong scaling with low memory usage up to about 100k cores on the Oakforest-PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors.

Journal Articles

Study on In-Vessel Retention (IVR) of unprotected accident for fast reactor, 1; Overview of IVR evaluation in Anticipated Transient without Scram (ATWS)

Suzuki, Toru; Sogabe, Joji; Tobita, Yoshiharu; Sakai, Takaaki*; Nakai, Ryodai

Nihon Kikai Gakkai Rombunshu (Internet), 83(848), p.16-00395_1 - 16-00395_9, 2017/04

no abstracts in English

Journal Articles

Study on In-Vessel Retention (IVR) of unprotected accident for fast reactor, 1; Overview of IVR evaluation in Anticipated Transient without Scram (ATWS)

Suzuki, Toru; Sogabe, Joji; Tobita, Yoshiharu; Sakai, Takaaki*; Nakai, Ryodai

Dai-21-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 4 Pages, 2016/06

Journal Articles

Open-source remote visualization software PBVR

Kawamura, Takuma

Keisan Kogaku Nabi, Nyusu Reta (Internet), 7, p.4 - 5, 2015/06

It has been difficult for traditional remote visualization systems to explore large-scale data because of bottlenecks such as visualization speed, memory limit, and data transfer time. Remote visualization software PBVR (Particle-Based Volume Rendering) employed client-server system and achieved interactive data exploration by converting the large-scale data to small particle data which is transferred to the client machine. We developed PBVR system as open source code and contributed an article about PBVR system.

Journal Articles

A Preliminary evaluation of unprotected loss-of-flow accident for a prototype fast-breeder reactor

Suzuki, Toru; Tobita, Yoshiharu; Kawada, Kenichi; Tagami, Hirotaka; Sogabe, Joji; Matsuba, Kenichi; Ito, Kei; Ohshima, Hiroyuki

Nuclear Engineering and Technology, 47(3), p.240 - 252, 2015/04

 Times Cited Count:27 Percentile:91.4(Nuclear Science & Technology)

Journal Articles

Multivariate volume rendering using transfer function synthesizer implemented in remote visualization system PBVR

Kawamura, Takuma; Idomura, Yasuhiro; Miyamura, Hiroko; Takemiya, Hiroshi

Proceedings of SIGGRAPH Asia 2015 (SA 2015) (Internet), 4 Pages, 2015/00

In this paper, we propose a novel transfer function design technique for multivariate volume rendering. This technique generates a multidimensional transfer function by logical synthesis of variables and transfer functions. This technique enables analysts to extract correlation of variables and to combine multivariate surface and volume shapes. And this technique is implemented in Remote Visualization System PBVR optimized to several supercomputers. An experiment for the multi-phase fuel melting simulation result in the nuclear energy field shows the powerful ability of this technique enough by extracting complex behavior of molten materials.

Journal Articles

An Experimental study on heat transfer from a mixture of solid-fuel and liquid-steel during core disruptive accidents in Sodium-Cooled Fast Reactors

Kamiyama, Kenji; Konishi, Kensuke; Sato, Ikken; Toyooka, Junichi; Matsuba, Kenichi; Suzuki, Toru; Tobita, Yoshiharu; Pakhnits, A. V.*; Vityuk, V. A.*; Vurim, A. D.*; et al.

Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 8 Pages, 2014/12

Journal Articles

Tritium release from neutron-irradiated Li$$_2$$O; Transport in porous sintered pellets

Tanifuji, Takaaki*; Yamaki, Daiju; Jitsukawa, Shiro

Fusion Engineering and Design, 81(1-7), p.595 - 600, 2006/02

 Times Cited Count:3 Percentile:24.11(Nuclear Science & Technology)

The tritium release behavior from Li$$_{2}$$O sintered pellets is observed by isothemal heating tests. (1) For 81%TD,The rate determining process is controlled by Kohlrauch strecthed exponential form. Tritium trapped in irradiation defects released with recovering the defects by isothermal heating. (2) For 88%TD, tritium release behavior is controlled by Avrami law (exponent n=0.5). The rate determining process is the connected micro-pore migration process.

Journal Articles

Utilization of the volume rendering with spherical sampling method to immersive VR system

Suzuki, Yoshio*; Takeshima, Yuriko; Ono, Nobuaki*; Koyamada, Koji*

Nihon Bacharu Riaritei Gakkai Rombunshi, 10(2), p.231 - 240, 2005/06

A volume rendering is widely used for intuitively understanding 3-dimensionaly distribution of physical quantities. When the quantities have a nest-like distribution, however, the inside distribution cannot be observed. As one of the solution, an immersive virtual reality (VR) system is useful, since the researcher can immersively observe the distribution by using such a system. However, a plane slice sampling method conventionally used in the volume rendering has a problem that the quality of visualized images deteriorates especially in the immersive VR system. To resolve the problem, a spherical surface sampling method is applied to the volume rendering in the immersive VR system. The quality of image and the display speed are compared between these two methods.

Journal Articles

Lecture of Super Science Highschool on Nishiyamato-gakuen; Trial of education of programing, visualization, VR

Ueshima, Yutaka

i-Net, (13), p.6 - 9, 2005/05

no abstracts in English

JAEA Reports

Visualization environment and its utilization in the ITBL building

Yasuhara, Yuko*

JAERI-Data/Code 2004-009, 31 Pages, 2004/12

JAERI-Data-Code-2004-009.pdf:8.42MB

In recent years, visualization techniques have become more and more important in various fields. Especially in scientific fields, a large amount of numerical output data crucially needs to be changed into visualized form, because computations have grown to larger and larger scales as well as have become more complicated, so that computed results must be intuitively comprehensible by using various visualization techniques like 3D or stereo image construction. In the visualization room in the ITBL building, a 3-screen Virtual Reality system, a Portable Virtual Reality system, a Mixed Reality system, and Visualization tools like alchemy etc. are installed for the above-mentioned use. These devices enable us to easily change numerical data into visualized images of a virtual reality world with the use of eye-glasses or a head-mount-display device. This article describes the visualization environment in the ITBL building, it's use, and the tasks to be solved.

Journal Articles

Education of programming and visualization using of 3DAVS-Player and Portable VR in the Nishiyamato-Gakuen SSH project

Ueshima, Yutaka

Kashika Joho (CD-ROM), 24(Suppl.3), 6 Pages, 2004/10

no abstracts in English

68 (Records 1-20 displayed on this page)